

Sustainable Nanotechnology Organization

Research | Education | Responsibility

Self-assembly of tri-functional and di-functional alkane silanes into hydrophobic silica nanoparticles in aqueous media

Abul Bashar Mohammad Giasuddin David W Britt

Outline

- Background
- Stöber method silica nanoparticles (NPs)
 - Synthesis
 - Hydrophobic coating
- Concept of <u>1-step</u>, <u>aqueous synthesis</u> of silica NPs from tri-functional silane
- Hydrophobic silica NPs from tri- and di- functional alkane silanes
 - DLS (kinetics of NP growth, final sizes)
 - AFM (hydrophobic silica NP pathway elucidation)
- Conclusion

Background

- Hydrophobic silica nanoparticles

 (NPs) are widely used in self-cleaning materials, waterproof textiles, oil
 separation, and anticorrosive
 industrials parts
- Silica based NPs with hydrophobic functionality also have potential applications as carriers for hydrophobic drugs

VI Water droplets on treated glass Water droplets on treated aluminium panel

Vitolane[®] technology (hydrophobic silane coatings) 150° water contact angles

Carcouet et al., Nano Lett. 2014, 14, 1433–1438

Hydrophobic coating on silica NPs

Hydrolysis and condensation pathways

Controlling size of the silica NPs

Silanes used in this study

F

D3F (Methyl(3,3,3trifluoropropyl)dimethoxysilane) ρ: 1.089 g/mL Purity: >95% 3F (3,3,3-trifluoropropylmethoxysilanol) ρ: 1.142 g/mL Purity: 98%

O—Si—

nPM (n-propyltrimethoxysilanol) ρ: 0.932 g/mL Purity: >95%

O—Si—C

Experimental procedure

Controlled growth of 3F and nPM NPs: DLS

Controlled growth of 3F NPs: AFM

Controlled growth of nPM NPs: AFM

NPs from di-functional silanes

D3F NPs: DLS and AFM analysis

3F and nPM NPs formation mechanism

Super-hydrophobicity of 3F and nPM NPs

3F NPs: 151°

nPM NPs: 153°

Static water contact angle on a) fluorinated silica NPs (3F NPs), and b) methylated silica NPs (nPM NPs) prepared as thin films on double-stick tape

b)

Floating NPs on water

Conclusion

- Successful aqueous 1-step synthesis of fluoro- (3F) and methyl- (nPM) silica NPs
- 3F based NPs are monodisperse spheres while the methyl-silane nPM NPs were polydisperse under same reaction conditions
- Dimethoxy 3F control confirmed cross-linking necessary for NP formation
- Water contact angles confirmed super hydrophobicity

Thanks & Question?

